

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

RecordsKeeper Core

[image: Build Status] [https://travis-ci.org/RecordsKeeper/recordskeeper-core]

Recordskeeper [http://recordskeeper.co/] is an open source platform for private blockchains, which offers a rich set of features including extensive configurability, rapid deployment, permissions management, native assets and data streams. Although it is designed to enable private blockchains, Recordskeeper provides maximal compatibility with the bitcoin ecosystem, including the peer-to-peer protocol, transaction/block formats and Bitcoin Core [https://bitcoin.org/en/bitcoin-core/] APIs/runtime parameters.

Copyright (c) 2017-2018 Recordskeeper
License: GNU General Public License version 3, see COPYING

Portions copyright (c) 2014-2017 Coin Sciences Ltd
Portions copyright (c) 2009-2016 The Bitcoin Core developers
Portions copyright many others - see individual files

System requirements

These compilation instructions have been tested on Ubuntu 14.04 x64 only.

C++ compilers are memory-hungry, so it is recommended to have at least 1 GB of memory available when compiling RecordsKeeper. With less memory, compilation may take much longer due to swapfile thrashing.

Linux Build Notes (on Ubuntu 14.04 x64)

Install dependencies

sudo apt-get update
sudo apt-get install build-essential libtool autotools-dev automake pkg-config libssl-dev libevent-dev bsdmainutils
sudo apt-get install libboost-all-dev
sudo apt-get install git
sudo apt-get install software-properties-common
sudo add-apt-repository ppa:bitcoin/bitcoin
sudo apt-get update
sudo apt-get install libdb4.8-dev libdb4.8++-dev

Compile Recordskeeper for Ubuntu (64-bit)

./autogen.sh
./configure
make

Notes

	This will build rkd, rk-cli and rk-util in the src directory.

	The release is built with GCC after which strip rkd strings the debug symbols, which reduces the executable size by about 90%.

Windows Build Notes (on Ubuntu 14.04 x64)

Install dependencies

sudo apt-get update
sudo apt-get install build-essential libtool autotools-dev automake pkg-config libssl-dev libevent-dev bsdmainutils
sudo apt-get install g++-mingw-w64-i686 mingw-w64-i686-dev g++-mingw-w64-x86-64 mingw-w64-x86-64-dev curl
sudo apt-get install libboost-system-dev libboost-filesystem-dev libboost-chrono-dev libboost-program-options-dev libboost-test-dev libboost-thread-dev
sudo apt-get install git
sudo add-apt-repository ppa:bitcoin/bitcoin
sudo apt-get update
sudo apt-get install libdb4.8-dev libdb4.8++-dev

Compile Recordskeeper for Windows (64-bit)

./autogen.sh
cd depends
make HOST=x86_64-w64-mingw32 -j4
cd ..
./configure --prefix=`pwd`/depends/x86_64-w64-mingw32 --enable-cxx --disable-shared --enable-static --with-pic
make

Notes

	This will build rkd.exe, rk-cli.exe and rk-util.exe in the src directory.

Mac Build Notes (on MacOS Sierra)

Install dependencies

Install XCode and XCode command line tools
Install git from git-scm
Install brew (follow instructions on brew.sh)
brew install autoconf automake berkeley-db4 libtool boost openssl pkg-config rename

Prepare for static linking

Apple does not support statically linked binaries as documented here [https://developer.apple.com/library/content/qa/qa1118/_index.html], however, it is convenient for end-users to launch a binary without having to first install brew, a third-party system designed for developers.

To create a statically linked Recordskeeper Blockchain which only depends on default MacOS dylibs, the following steps are taken:

	Hide the brew boost dylibs from the build system:
rename -e 's/.dylib/.dylib.hidden/' /usr/local/opt/boost/lib/*.dylib

	Hide the brew berekley-db dylibs from the build system:
rename -e 's/.dylib/.dylib.hidden/' /usr/local/opt/berkeley-db@4/lib/*.dylib

	Hide the brew openssl dylibs from the build system:
rename -e 's/.dylib/.dylib.hidden/' /usr/local/opt/openssl/lib/*.dylib

The default brew cookbook for berkeley-db and boost builds static libraries, but the default cookbook for openssl only builds dylibs.

	Tell brew to build openssl static libraries:
brew edit openssl
In 'def configure_args' change 'shared' to 'no-shared'
brew install openssl --force

Compile Recordskeeper for Mac (64-bit)

export LDFLAGS=-L/usr/local/opt/openssl/lib
export CPPFLAGS=-I/usr/local/opt/openssl/include
./configure --with-gui=no --with-libs=no --with-miniupnpc=no
make

Clean up

rename -e 's/.dylib.hidden/.dylib/' /usr/local/opt/berkeley-db\@4/lib/*.dylib.hidden
rename -e 's/.dylib.hidden/.dylib/' /usr/local/opt/boost/lib/*.dylib.hidden
rename -e 's/.dylib.hidden/.dylib/' /usr/local/opt/openssl/lib/*.dylib.hidden
brew edit openssl
 In 'def configure_args' change 'no-shared' to 'shared'

Notes

	This will build rkd, rk-cli and rk-util in the src directory.

Contributing

We'd love to accept your code patches! However, before we can take them, we
have to jump a couple of legal hurdles.

Contributor License Agreements

Please fill out either the individual or corporate Contributor License
Agreement as appropriate.

	If you are an individual writing original source code and you're sure you
own the intellectual property, then sign an individual CLA [https://developers.google.com/open-source/cla/individual].

	If you work for a company that wants to allow you to contribute your work,
then sign a corporate CLA [https://developers.google.com/open-source/cla/corporate].

Follow either of the two links above to access the appropriate CLA and
instructions for how to sign and return it.

Submitting a Patch

	Sign the contributors license agreement above.

	Decide which code you want to submit. A submission should be a set of changes
that addresses one issue in the issue tracker [https://github.com/google/leveldb/issues].
Please don't mix more than one logical change per submission, because it makes
the history hard to follow. If you want to make a change
(e.g. add a sample or feature) that doesn't have a corresponding issue in the
issue tracker, please create one.

	Submitting: When you are ready to submit, send us a Pull Request. Be
sure to include the issue number you fixed and the name you used to sign
the CLA.

Writing Code

If your contribution contains code, please make sure that it follows
the style guide [http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml].
Otherwise we will have to ask you to make changes, and that's no fun for anyone.

 LevelDB is a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.

Authors: Sanjay Ghemawat (sanjay@google.com) and Jeff Dean (jeff@google.com)

Features

	Keys and values are arbitrary byte arrays.

	Data is stored sorted by key.

	Callers can provide a custom comparison function to override the sort order.

	The basic operations are Put(key,value), Get(key), Delete(key).

	Multiple changes can be made in one atomic batch.

	Users can create a transient snapshot to get a consistent view of data.

	Forward and backward iteration is supported over the data.

	Data is automatically compressed using the Snappy compression library [http://code.google.com/p/snappy].

	External activity (file system operations etc.) is relayed through a virtual interface so users can customize the operating system interactions.

	Detailed documentation [http://htmlpreview.github.io/?https://github.com/google/leveldb/blob/master/doc/index.html] about how to use the library is included with the source code.

Limitations

	This is not a SQL database. It does not have a relational data model, it does not support SQL queries, and it has no support for indexes.

	Only a single process (possibly multi-threaded) can access a particular database at a time.

	There is no client-server support builtin to the library. An application that needs such support will have to wrap their own server around the library.

Performance

Here is a performance report (with explanations) from the run of the
included db_bench program. The results are somewhat noisy, but should
be enough to get a ballpark performance estimate.

Setup

We use a database with a million entries. Each entry has a 16 byte
key, and a 100 byte value. Values used by the benchmark compress to
about half their original size.

LevelDB: version 1.1
Date: Sun May 1 12:11:26 2011
CPU: 4 x Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
CPUCache: 4096 KB
Keys: 16 bytes each
Values: 100 bytes each (50 bytes after compression)
Entries: 1000000
Raw Size: 110.6 MB (estimated)
File Size: 62.9 MB (estimated)

Write performance

The "fill" benchmarks create a brand new database, in either
sequential, or random order. The "fillsync" benchmark flushes data
from the operating system to the disk after every operation; the other
write operations leave the data sitting in the operating system buffer
cache for a while. The "overwrite" benchmark does random writes that
update existing keys in the database.

fillseq : 1.765 micros/op; 62.7 MB/s
fillsync : 268.409 micros/op; 0.4 MB/s (10000 ops)
fillrandom : 2.460 micros/op; 45.0 MB/s
overwrite : 2.380 micros/op; 46.5 MB/s

Each "op" above corresponds to a write of a single key/value pair.
I.e., a random write benchmark goes at approximately 400,000 writes per second.

Each "fillsync" operation costs much less (0.3 millisecond)
than a disk seek (typically 10 milliseconds). We suspect that this is
because the hard disk itself is buffering the update in its memory and
responding before the data has been written to the platter. This may
or may not be safe based on whether or not the hard disk has enough
power to save its memory in the event of a power failure.

Read performance

We list the performance of reading sequentially in both the forward
and reverse direction, and also the performance of a random lookup.
Note that the database created by the benchmark is quite small.
Therefore the report characterizes the performance of leveldb when the
working set fits in memory. The cost of reading a piece of data that
is not present in the operating system buffer cache will be dominated
by the one or two disk seeks needed to fetch the data from disk.
Write performance will be mostly unaffected by whether or not the
working set fits in memory.

readrandom : 16.677 micros/op; (approximately 60,000 reads per second)
readseq : 0.476 micros/op; 232.3 MB/s
readreverse : 0.724 micros/op; 152.9 MB/s

LevelDB compacts its underlying storage data in the background to
improve read performance. The results listed above were done
immediately after a lot of random writes. The results after
compactions (which are usually triggered automatically) are better.

readrandom : 11.602 micros/op; (approximately 85,000 reads per second)
readseq : 0.423 micros/op; 261.8 MB/s
readreverse : 0.663 micros/op; 166.9 MB/s

Some of the high cost of reads comes from repeated decompression of blocks
read from disk. If we supply enough cache to the leveldb so it can hold the
uncompressed blocks in memory, the read performance improves again:

readrandom : 9.775 micros/op; (approximately 100,000 reads per second before compaction)
readrandom : 5.215 micros/op; (approximately 190,000 reads per second after compaction)

Repository contents

See doc/index.html for more explanation. See doc/impl.html for a brief overview of the implementation.

The public interface is in include/*.h. Callers should not include or
rely on the details of any other header files in this package. Those
internal APIs may be changed without warning.

Guide to header files:

	include/db.h: Main interface to the DB: Start here

	include/options.h: Control over the behavior of an entire database,
and also control over the behavior of individual reads and writes.

	include/comparator.h: Abstraction for user-specified comparison function.
If you want just bytewise comparison of keys, you can use the default
comparator, but clients can write their own comparator implementations if they
want custom ordering (e.g. to handle different character encodings, etc.)

	include/iterator.h: Interface for iterating over data. You can get
an iterator from a DB object.

	include/write_batch.h: Interface for atomically applying multiple
updates to a database.

	include/slice.h: A simple module for maintaining a pointer and a
length into some other byte array.

	include/status.h: Status is returned from many of the public interfaces
and is used to report success and various kinds of errors.

	include/env.h:
Abstraction of the OS environment. A posix implementation of this interface is
in util/env_posix.cc

	include/table.h, include/table_builder.h: Lower-level modules that most
clients probably won't use directly

Building LevelDB On Windows

Prereqs

Install the Windows Software Development Kit version 7.1 [http://www.microsoft.com/downloads/dlx/en-us/listdetailsview.aspx?FamilyID=6b6c21d2-2006-4afa-9702-529fa782d63b].

Download and extract the Snappy source distribution [http://snappy.googlecode.com/files/snappy-1.0.5.tar.gz]

	Open the "Windows SDK 7.1 Command Prompt" :
Start Menu -> "Microsoft Windows SDK v7.1" > "Windows SDK 7.1 Command Prompt"

	Change the directory to the leveldb project

Building the Static lib

	32 bit Version

 setenv /x86
 msbuild.exe /p:Configuration=Release /p:Platform=Win32 /p:Snappy=..\snappy-1.0.5

	64 bit Version

 setenv /x64
 msbuild.exe /p:Configuration=Release /p:Platform=x64 /p:Snappy=..\snappy-1.0.5

Building and Running the Benchmark app

	32 bit Version

 setenv /x86
 msbuild.exe /p:Configuration=Benchmark /p:Platform=Win32 /p:Snappy=..\snappy-1.0.5
 Benchmark\leveldb.exe

	64 bit Version

 setenv /x64
 msbuild.exe /p:Configuration=Benchmark /p:Platform=x64 /p:Snappy=..\snappy-1.0.5
 x64\Benchmark\leveldb.exe

libsecp256k1

[image: Build Status] [https://travis-ci.org/bitcoin/secp256k1]

Optimized C library for EC operations on curve secp256k1.

This library is a work in progress and is being used to research best practices. Use at your own risk.

Features:

	secp256k1 ECDSA signing/verification and key generation.

	Adding/multiplying private/public keys.

	Serialization/parsing of private keys, public keys, signatures.

	Constant time, constant memory access signing and pubkey generation.

	Derandomized DSA (via RFC6979 or with a caller provided function.)

	Very efficient implementation.

Implementation details

	General

	No runtime heap allocation.

	Extensive testing infrastructure.

	Structured to facilitate review and analysis.

	Intended to be portable to any system with a C89 compiler and uint64_t support.

	Expose only higher level interfaces to minimize the API surface and improve application security. ("Be difficult to use insecurely.")

	Field operations

	Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).

	Using 5 52-bit limbs (including hand-optimized assembly for x86_64, by Diederik Huys).

	Using 10 26-bit limbs.

	Field inverses and square roots using a sliding window over blocks of 1s (by Peter Dettman).

	Scalar operations

	Optimized implementation without data-dependent branches of arithmetic modulo the curve's order.

	Using 4 64-bit limbs (relying on __int128 support in the compiler).

	Using 8 32-bit limbs.

	Group operations

	Point addition formula specifically simplified for the curve equation (y^2 = x^3 + 7).

	Use addition between points in Jacobian and affine coordinates where possible.

	Use a unified addition/doubling formula where necessary to avoid data-dependent branches.

	Point/x comparison without a field inversion by comparison in the Jacobian coordinate space.

	Point multiplication for verification (aP + bG).

	Use wNAF notation for point multiplicands.

	Use a much larger window for multiples of G, using precomputed multiples.

	Use Shamir's trick to do the multiplication with the public key and the generator simultaneously.

	Optionally (off by default) use secp256k1's efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones.

	Point multiplication for signing

	Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions.

	Access the table with branch-free conditional moves so memory access is uniform.

	No data-dependent branches

	The precomputed tables add and eventually subtract points for which no known scalar (private key) is known, preventing even an attacker with control over the private key used to control the data internally.

Build steps

libsecp256k1 is built using autotools:

$./autogen.sh
$./configure
$ make
$./tests
$ sudo make install # optional

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

